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Thin-Plate Spline

* Given corresponding source and target points

* Computes a spatial deformation function for every point in the 2D
plane or 3D volume

Credits: Sprengel et al, EMBS (1996)



Thin-Plate Spline
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Principal Warps: Thin-Plate Splines and the
Decomposition of Deformations

FRED L. BOOKSTEIN

Abstract—One conventional tool for interpolating surfaces over scat-
tered data, the thin-plate spline, has an elegant algebra expressing the
dependence of the physical bending energy of a thin metal plate on
point constraints. For interpolation of a surface over a fixed set of nodes
in the plane, the bending energy is a quadratic form in the heights
assigned to the surface. The spline is the superposition of eigenvectors
of the bending energy matrix, of successively larger physical scales,
over a tilted flat plane having no bending energy at all.

When these splines are paired, one representing the x-coordinate of
another form and the other the y-coordinate, they aid greatly in the
modeling of biological shape change as deformation. In this context, the
pair becomes an interpolation map from R’ to R’ relating two sets of
landmark points. The spline maps decompose, in the same way as the
spline surfaces, into a linear part (an affine transformation) together
with the superposition of principal warps, which are geometrically in-
dependent, affine-free deformations of progressively smaller geomet-
rical scales. The warps decompose an empirical deformation into or-
thogonal features more or less as a conventional orthogonal functional
analysis decomposes the single scene. This paper demonstrates the de-
composition of deformations by principal warps, extends the method
to deal with curving edges between landmarks, relates this formalism
to other applications of splines current in computer vision, and indi-
cates how they might aid in the extraction of features for analysis, com-
parison, and diagnosis of biological and medical images.

Index Terms—Affine transformations, biharmonic equation,
biomedical image analysis, deformation, principal warps, quadratic
variation, shape, thin-plate splines, warping.

Fig. 1. Fundamental solution of the biharmonic equation: a circular frag-
ment of the surface z(x, ¥) = —r log r* viewed from above. The X is
at (0, 0, 0); the remaining zeros of the function are on the circle of radius
| drawn.

circle, where » = 1. The maximum of the surface is
achieved all along a circle of radius 1/ve ~ 0.607 con-
centric with the circle of radius 1 that is drawn.

The function U(r) satisfies the equation

y # 2\
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The right-hand side of this expression is proportional to



Thin-Plate Spline
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Landmark-Based Elastic Registration Using

elastic registration using Approximating T

approximating thin-
p I a te S p | i n e S o " Abstract—We consider elastic image registration based on a set

of corresponding anatomical point landmarks and approximating

thin-plate splines. This approach is an extension of the original in-

I E E E Tr a n S a Ct i O n S 0 n terpolating thin-plate spline approach and allows to take into ac-
count landmark localization errors. The extension is important for

. . . clinical applications since landmark extraction is always prone to

m e d I Ca l I m a g I n g 2 O 6 error. OQur approach is based on a minimizing functional and can
* cope with isotropic as well as anisotropic landmark errors. In par-

ticular, in the latter case it is possible to include different types of

( 2 O O 1 ) * 5 2 6 - 5 3 4 landmarks, e.g., unique point landmarks as well as arbitrary edge
* * points. Also, the scheme is general with respect to the image di-

mension and the order of smoothness of the underlying functional.

Optimal affine transformations as well as interpolating thin-plate

splines are special cases of this scheme. To localize landmarks we

hin-Plate Splines

K. Rohr*, H. S. Stiehl, R. Sprengel, T. M. Buzug, J. Weese, and M. H. Kuhn

steps: 1) extraction of landmarks in the different datasets;
2) establishing the correspondence between the landmarks; and
3) computing the transformation between the datasets using
the information from 1) and 2). Among the different types
of landmarks (points, lines, surfaces, and volumes) we here
consider point landmarks.

Previous work on point-based elastic registration has concen-
trated on a) selecting the corresponding landmarks manually
and on b) using an interpolating transformation model (e.g., [2],
[7], and [11]). The basic approach draws upon thin-plate splines
or other splines and is computationally efficient. However, an
interpolation scheme forces the corresponding landmarks to ex-



Thin-Plate Spline

* A minimization problem
* Minimizing distances between source and target points

* Minimizing distortion of the space
(as if bending a thin sheet of metal)

* There is a closed-form solution
* Solving a linear system of equations




Thin-Plate Spline

N P
* Input L Lf'ﬁ [:/ i
* Source points: py,...,P;, * b
* Target points: qy,...,d, nEEEIES
o1 P

* Output

* A deformation function f[p] for any point p




Thin-Plate Spline

e Minimization formulation

E=Ef+ AEg

* E: fitting term
Measures how close is the deformed source to the target

* E,4: distortion term
Measures how much the space is warped

- A weight

Controls how much non-rigid warping is allowed



Thin-Plate Spline

* Fitting term
* Minimizing sum of squared distances between deformed source points and
target points

Ee= ) I1£[ps] - qll?
o o



Thin-Plate Spline

* Distortion term
* Minimizing a physical bending energy on a metal sheet (2D):
02 £ )2 .
Eq = JJ e + 2 dxdy
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* The energy is zero when the deformation is affine
* Translation, rotation, scaling, shearing



Thin-Plate Spline

* Finding the minimizer for E =Ef +AEq

* Uniquely exists, and has a closed form:

£[p] =M-p+ ) é[ilp-psll] vs
i=1

where ¢[r] = r? Log[r]

M: an affine transformation matrix
Expressed as a RBF phi A

¢[r]

v;: coefficients
Both M and v; are determined by p,,q;,
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http://fr.wikipedia.org/wiki/Solution_de_forme_ferm%C3%A9e
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Thin-Plate Spline

e Result

e At higher-'\ , the
deformation is
closer to an affine
transformation

Credits: Sprengel et al, EMBS (1996)

| =0.001
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Thin-Plate Spline

* Application: image registration
* Manual or automatic feature pair detection

Source Target

Credits: Rohr et al, TMI (2001)

Deformed source
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Thin-Plate Spline

* Advantages
* Smooth deformations, with physical analogy
* Closed-form solution
* Few free parameters (no tuning is required)

e Disadvantages

* Solving the equations still takes time
(hence cannot perform “interactive” deformation)
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SIFT

* Example of automated point corresponding landmarks detection

* SIFT : Scale Invariant Feature Transform
Lowe, David G. (1999). "Proceedings of the International Conference
on Computer Vision" 2. pp. 1150-1157

2 steps:

* Identify points with “special” characteristic (gradient, scale-invariant)
in both image

* Pair image points with criteria

15
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The “sliding problem”

e Deformable registration is ill-posed
* Requires prior knowledge

* Smoothness is a common prior

* Sliding causes discontinuity in the
motion field: leads to errors




Previous work

* Biomechanical modelling

* Contact surface problem solved with FEM
 [Villard et al 2005] [Al-Mayah et al 2008]

* Adapted regularization
* [Wolthaus et al 2008] [Ruan et al 2008]

e Approach by “masks”
 [Wu et al 2008] [Werner et al 2009] [Kabus et al 2009]
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Main principles

* Provide interface where sliding occurs
* Decompose registration spatially

 Separate moving from less-moving
regions: motion mask

* Segmentation:

* Not anatomical
* Based on geometry
* We used level sets

* Perform 2 registrations
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Extract some anatomical structures

* Lungs, bones and body extraction

* Filtering, mathematical morphology and region
growing [Perona and Malik, 1990; van Rikxoort et al., 2009]
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Filling the abdomen, monitor the air
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Results

* Mask allows to enforce stronger smoothness

e Accuracy significantly improved for 5 patients of 6

Without motion mask

With motion mask




Single region registration Two regions registration
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Results

Estimate registration accuracy based on 600 landmarks

Patient
1

2
TRE 3
4
5

6
Mean

Before (mm)

9.4
s
7.

ST/
14.0
6.8
8.6

No Mask (mm)
2.4
2.8
1].48!
1.6
2.8
2.1
2.3

Mask (mm)

1:8
2.6
1.6
S
1.8
12
1.9
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Use this mask in DIR ?

e Solution n°1 : pmﬂcr +\ -

26

But :
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(a) Labels

(b) Vector field

(c) Forward warp
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Use this mask in DIR ?

* Solution n®2 :
* Direction-Dependent Regularization
* Consider directions normal/tangential to the boundaries
* [Schmidt-Richberg et al., 2009] : for non-parametric DIR
* [Delmon et a. 2013 - oy cnmerotrin B Cnlinac

-~

VN
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Use this mask in DIR ?

* Solution n®2 :
* Direction-Dependent Regularization
* Consider directions normal/tangential to the boundaries
* [Schmidt-Richberg et al., 2009] : for non-parametric DIR

* [Delmon et a. 2013] : for parametric T(x) = T, ¢;5:(x)
Normal direction

Inside

| BNx)+B%(x) ifxeqQ,
MR { BN(x)+B%(x) ifxecq.

Outside N NN(i)
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Direction-Dependent Regularization

(a) Single region (b) Multiple regions  (c) Multiple regions with
normal

29
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Direction-Dependent Regularization

: |4
i . BT REY
(a) Single region (b) Multiple regions  (c) Multiple regions with
normal
Before Single region || Multi regions || Multi regions
with normal
Mean | SD || Mean | SD || Mean | SD || Mean | SD
average || 8.42 | 564 || 382 | 415 | 142 | 1.05 || 1.43 | 1.06
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Direction-Dependent Regularization

Single region || Multi regions || Multi regions
with normal

Mean | SD Mean | SD Mean | SD

Before
Mean | SD
average || 8.42 | 5.64

= W " W W%
-— e . W _ W .-

(a) Multiple regions

382 | 4.15 142 | 1.05 1.43 | 1.06
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(b) Multiple regions with normal

Figure: A Jacobian based quality measure |log(Jac(proj( T(x), N)))|
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Conclusion on motion mask extraction

 Comes down to monitored segmentation of binary
Images

* Allows to preserve sliding motion in the motion field:

it facilitates deformable registration

* Allows to introduce stronger smoothness
assuthions: renders the algorithm more efficient
and robust, while maintaining accuracy

B Direction-Dependent Regularization may help to
further improve consistency

[Vandemeulebroucke et al. Med Phys 2012]
[Delmon et al PMB 2013]
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Conclusion — deformable registration

* Numerous applications (not only medical)
* |ll-posed problem (=hard)

* Numerous methods (Demons, B-splines, ...)
no « universal » method

e Validation is difficult

* Notions
* Geometrical transformation (deformation)
e Similarity measure
* Optimisation
 Validation
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4D CT

* Acquisition of 10 volumes 3D (phases)
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4D CT — breathing motion
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Successive DIR

I End-exhale

T(I, 1)

T° =TI, 1)

T =T(I, L)

End-inhale



Interpolation between vector fields

I

t inla : b

b—t
b—a

T(x,t)=x+

T +

t—a

b—a

Tb



DVF : Deformation Vector Field

sagital

(NPT ~ -~
W - C)C)




Registration of 4D CT

* 4D registration = register a reference phase to the 9
other phases

* Artifacts: registration can fail locall

______

’
-----

* Global 4D approach
* Estimating trajectories

* Consecutive 3D registrations
* Estimating displacements
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Spatio-temporal registration

Previous work
m Spatio-temporal analysis of cardiac motion (Clarysse et al., 2000;
Ledesma-Carbayo et al., 2005; Sundar et al., 2009)
m 4D regqistration of thoracic sequences (Schreibmann et al., 2008)
-> No trajectory modelling for respiration
m 3D-4D non-parametric registration (Castillo et al., 2010)
-~ Trajectory between end-exhale and end-inhale, not cyclic

Our approach

m 3D-4D parametric spatio-temporal registration

-> Cyclic trajectory covering the whole cycle
-> Trajectory modelling specific for respiration
-> Compact a parametrization to improve robustness




Model of trajectory

e Search for plausible trajectories model with as few
parameters as possible

e Study trajectories of diaphragm motion of 33
patients (CBCT)

e End up with
e B-Spline
e 7 control points (5 DOF)
* Cyclic
 Remove smoothness at inhale point

SHAe)



Global 4D DIR

» Temporal model 7; with temporal contraints, e.g. periodicity

Ti(x, t) = + 3y, it (t) } Z b, Y1(0) — ¥y(te)

Ti(z,0)=T(z, tc) e, Vi, (te)

= Contraints allow to generate a new set of basis functions

(1(0) - Wu(te)) ¥, (2)

Vi(t) = i(t) + U1 (te)

m Spatial free-form deformations 7 (Rueckert et al., 1999)

Ts(x) = = + Z a;jpi(x)
J€ed

» Combining 75 and 7; gives a spatio-temporal model

To(z,t) =+ Y Y cjydi(@)vf(t)

jJeJ leLs



Results on simulated artifacts

Without artifact
(reference)

With artifact

Global 9(3.9) 3.2(3.4) 1.5(1.2)
Close to artifact 11.4 (3.7) 6.8 (4.3) 1.9 (1.2)



Results on real |mages

‘ S5SNI
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Summary

e 3D-to0-4D spatio-temporal model using cyclic
trajectory model

. Piﬁclewise smooth trajectory to account for end-
inhale

* Cubic B-splines with control point spacing of 2 or 2.5
frames (for 10 phases) =5 DOF, while TRE remains
within 0.1 mm

* Spatio-temporal registration improves robustness to
artifacts

» Still o BHPIRALISH tiIME T tWice the time of 9 3D
registrations, about 10 hours
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